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Integrals are evaluated in closed form for one-center two-electron CI wavefunctions which are 
multiplied by a cutoff correlation factor. Computational results are reported for the ground state of 
equilateral triangular H~. 

Integrale werden in geschlossener Form ausgeffihrt, welche ffir Ein-Zentrum Konfigurations- 
wechselwirkung-Wellenfunktionen f~ Molektile mit zwei Elektronen ben6tigt werden. Ergebnisse 
fftr den Grundzustand yon H~, mit der Struktur des gleichseitigen Dreieckes, werden mitgeteilt. 

Evaluation sous forme analytique d'int6grales pour des fonctions d'onde d'I.C./t deux 61ectrons 
monocentriques multipli6es par un facteur de corr61ation avec coupure. Des r6sultats num6riques 
sont donn6e pour l'6tat fondamental de H + en triangle 6quilat6ral. 

Introduction 

In the previous papers of this series (hereafter referred to as I [1], II  [-2] and 
III  [3]) configuration-interaction (CI) and SCF-type one-center wavefunctions 
for two-electron systems were multiplied by the correlation factor 1-}-~r12. 
Integrals were evaluated and computat ions performed with various wavefunctions 
on equilateral triangular Ha + and He l l  § in order to demonstrate the improve- 
ment in energy due to the correlation factor, A E, as a function of the number  
of terms, m, in the CI or SCF expansion. The results obtained so far indicate 
that AE increases with m for SCF functions [-3] but decreases rapidly for CI 
functions [2]. For a SCF expansion (H~) AE/E ~ increased from 0.3 to 1.8% and 
c~ from 0.049 to 0.189 for m from 1 to 9, whereas for a CI expansion (Hel l  § AE/E ~ 
decreased from 3 to 0.12% and c~ from 0.40 to 0.17 with m going from 1 to 20. 
E ~ is the energy resulting from the uncorrelated wavefunction. In the case of 
He l l  § A E increased with the internuclear distance R. 

In this paper we derive the integrals needed if one-center two-electron wave- 
functions consisting of s-type STO's are multiplied by a cutoff correlation factor 
1 + ~h(r12), with 

h ( r 1 2 ) = { ; z  if O<=rl2<=D 
if D<_r12<=c~. 

This correlation factor has been introduced by Gimarc,  Cooney, and Parr [-4], 
and applied to two-electron atoms. The parameter  D allows to describe the 
effective range of correlation in a well-defined way. 
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The computations by Gimarc et aI. gave the minimum energy at D = o% 
but for some of their CI functions the energy passed through a relative minimum 
at finite D. The range of correlation, defined as the value of D for which 90 to 95 % 
of the energy improvement due to the correlation 1 + e r , 2  is obtained, was 
about 2 Bohr radii for He, and decreased approximately as l /Z ,  Z being the 
atomic number of the two-electron atom [5J. 

In this work computations will be performed on equilateral triangular H~, 
based on Joshi's [6] one-center SCF calculations. 

Evaluation of Integrals 

The trial wavefunction for two-electrons will be written as 

~(71,  72) = {1 + eh(r12)} ~P~ r2) 

M 

= {1 +~h(r12)} ~ 0 , Ck~k (11, r2) (1) 
k = l  

M 

= y'  Ck~k(rl ,  r2).  
k = l  

~o and ~o are uncorrelated one-center wavefunctions, built from s-type STO's. 
As in Eq. (2) of II, the spin-free Hamiltonian operator is written as 

H - - T + V I + V 2 + V 3 + V  4, 

where T stands for the kinetic energy operator of the two electrons, I71 for the 
Coulomb attraction between central nucleus and electrons, V 3 between off- 
center nuclei and electrons, V 2 for the Coulomb repulsion between the electrons, 
and t14 between the nuclei. 

We define for an arbitrary operator B 

B/j• 
k Bij  - -  

S i j  = 

Si~ = 

where r --- r 12. 
Then one obtains for V = V~, 

and 

( q)O l { h(r) } k B i ~o)  , 

( e , 1 % > ,  
<~/~ {h(r)}kl ~~ 

v~,v~ 

v ~ 

Sij = S ~ + 2eS~j + ~2 S2 . 

(2) 

(3) 

pi,qi,~li,~i 

where At is a symmetrization operator in the case of singlet states. Defining 

(P, q/q, ()"'" = S~ rfrq2e-me-~r2{h(r)}"r" dr1 d v z ,  (5) 

We expand 

~bO(rl, r z )=Ai  ~ ci(pi, qi, th,~i )rlwrz~,e-~,,~e-~.,2, (4) 
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and similarly [p, rl/q, ~-l~('" with the additional factor R~x 1 in the integrand, we 
obtain (for s-orbitals only) 

V~iij = --  2 Z o h i a j ~  cicj(  p -- 1, I?/q, 0 " '~  , 

m = A i A j ~ c i c j ( p ,  V~ ij t l /q  ' ~)m, -- 1 

V~ij = _ 2 A i A j ~  cicj{~x Z x [ p ,  rl/q, ~]~,o} ' (6) 

sin) = A i A j ~ _ c i c j ( p ,  rl/q ' ~),,,o , 

where p = pi + p j, q = qf + q j, 17 = r h + 112, ~ = ~ + ~j. 
Now we evaluate the matrix elements for the kinetic energy operator T. 

r i j  = SS( V1 I~i)" (V1 (~)j) dr1 d r 2  
~'-o o7-1 2 ,a7-2 = ..~lij -'[- 2c ~ J i j  q- o~ ~/ i j  , 

with 

a-o = gg . .~ .  * 0.5 t}j, 

•k..,j, ti jk and sij are defined by 

d~j = SS [h(r)]k( V,  cb~ �9 ( P~ 40~ d r 2 ,  

tkj=SSy(r)rk-t r21 - r 2 + r 2  { 0~~ 4~o c~e~ 

with 

and 

[1 if r<=D 
7(r)= /0 if r > D ,  

s ,~=SS~(r )  o o ~ i  ~Dj dvl dr2. 

(7) 

The following definition will be needed in the further 
[.k k ands~j. ~j~ tij 

Then 
(P, rl/q, ~)*'" = S rf rq e -"rl  e-r r" dv  1 d v  2 . 

gkij = A i A j Z  CiCj { P i P j ( P -  2, rt/q, ()k,O __ (pirlj + Pjth ) 

x (p - 1, rl/q, ()k,o + rhrlj(P, rl/q ' [)k,o}, 

tkij = 0.5 A i A j Y [  cicj {(p i + pj) [(p, rl/q ' ~),,k- 2 

- (1) - 2 ,  11/q + 2, ~)*,k-2 _[_ (p _ _  2, t l /q ,  0 *,k] 
- t l [ ( p  + 1, t l / q ,  ~')*,k- 2 _ _  ( p  _ _  i, t l / q  + 2, ~ ' ) , , k - -  2 

+ (p - 1, tl/q, 0*'k]}, 

si j = A i A j ~  clcj(p ' rl/q ' ~). ,o , 

where p = Pi + P j, q = qi + q j, t? = ~h + rlfi ~- = [i + [j .  
26* 

evaluation of 

(8) 

(9) 

(lo) 
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Now we have expressed all occurring matrix elements in terms of the 
integrals (p, tl/q, ~)='", [p, tl/q, ~]~'" and (p, q/q, ~)*'". In order to work them out, 
we refer to the general integrals (ac/bd) and [ac/bd], evaluated by Calais and 
L6wdin [-7] and Grein and Hawton [-1], respectively. Both were expanded in 
a series containing the integrals Q(f, 9, h, 2) and Q(ff, g, h, 2). Defining 

G(p,q, tl,~,{m.},n, 2)=~rfe-"r*dr~x ~rq2e-r 
0 o (11) 

fh(rV"~ 
X [ ~ ' '  ~rnp~ 

( {~ ) n, 2 with an additional factor R ;  ~ in the inte- and similarly G o p, q, t/, ~, �9 , , 

grand, we have the correspondence 

The notation 

( {m} ) n, 0 Q(f, g, h, O)-, G p + 2 ,  q+2,~/,~, �9 , , 

( t ) n, 0 Q(f~ g, h, O)-+ G~ p + 2 ,  q + 2 ,  t/,~, �9 , . 

{7} [~h(r)m'~y(r), a n d [  means that either the upper or the lower part is 

to be taken. For  s-orbitals 2 equals zero. In papers I and II we expressed 
the G-integrals by further introducing F-integrals (see Eq. (23) of I and 
Eq. (13) of II). Correspondingly we define here 

n = r f e -~ 'dq  x r~e-~'~dr2 x 5 r"dr, (12) F p,q, rl,(, �9 , o o I,~-r21 ( )  

and similarly F ~ with a factor R ;  1 in the integrand of the first integral. 
Then 

/ { ,n, 0 + 1, q +  1, t/, {, m 

and (13) 

The F-integrals lead to expressions 

~,o-nrlpa d q  x S ~e-~r2dr2 , rSdrx -l~ *-> 
D 0 Irx -rl 

with a being 0 or - 1, which can be solved by standard integration methods. 

Equilateral Triangular H + 

For ~o(q ,  r2 ) we  used Joshi's [6] one-center SCF wavefunctions up to 
four terms (ls to 4s). In the first series of computations we leave the linear 
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Table 1. Results with cutoff correlation factor for H + 
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m 1 2 3 4 

terms ls  + 2s + 3s + 4s 

R I-a.u.l 0.923 0.897 0.897 0.895 

D [R] 1.8 2 2.6 2.6 

0.359 0.300 0.233 0.230 

- E ~'D [-a.u.~ 1.0522 1.1347 1.1908 1.1916 

- E  ~ [a.u.] 1.0260 1.1099 1.1663 1.1672 

- E  ~'~ [a.u.] 1.0290 1.1196 1.1873 1.1883 

(E ~ - E~'D)/E ~ 2.5 Too 2.1 To 2.1 Too 2.1 To 

(E ~,| - E~,~ ~, ~ 2.2 % 1.3 % 0.3 To 0.3 % 

coefficients, orbital exponents and internuclear distances unchanged. We have 

T~  r2) = qo(rl)q0(r2), 

q)(r) = ~ a i z i ( r  ) .  
i=1 

Optimization was performed with respect to c~ and D only. As in the 
computations reported in paper III, the geometric center of the molecule was 
chosen to be the origin of the coordinate system. The results are given in 
Table 1. D is expressed in units of R, R being the distance from the center 
of the molecule to one of the protons, or R = Rnn/~J .  
E ~'~ is the energy obtained by using the cutoff correlation factor. For 
comparison E ~ the energy of the uncorrelated wavefunction, and E ~'~176 the 
energy of the correlated wavefunction using the correlation factor 1 + cgra2 , are 
also given. 

The smallest increment of D was 0.2 R, the smallest increment of c~ was 0.001. 
It is of interest to observe that there is an absolute minimum for finite D. 
This minimum with respect to D was broad, becoming broader with increasing m. 

decreases but D increases with m, so the "range of correlation" increases with 
the larger expansion. If this trend continues the cutoff correlation factor 
1 + eh(r12 ) goes over into the correlation factor over all space, 1+ ~r12. The 
product 7D is approximately constant in the m = 2 to m = 4 computations, 
namely about 0.60 R. 

In Table 2 we give some percentage lowerings of two-electron probability 
densities, due to the inclusion of the cutoff correlation factor. We define 

A ~ 2  = { ~ o ( r l ,  r2)}2 _ {i/t~(~1,~2)}2 

with normalized wavefunctions. In parentheses the corresponding values for the 
correlation factor 1-+-~r12 are given. 
Notice that initial lowerings are high, and that they decrease with increasing m. 
This tendency was opposite in the case of the correlation factor 1 + ~r12. At 
m = 4 the percentage lowerings are similar. This again demonstrates that the 
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Table 2. Lowerin 9 of two-electron probability densities 

in A ~2/g~o2 % A ~/g~o2 % 
rl=r2=R, r12=0 ra=ri2=R/2, rz=R 

1 58(18) 42(15) 

2 53(31) 40(25) 

3 49(43) 37(34) 

4 48 (44) 37(35) 

Table 3. Complete optimization of various wavefunctions 

Wavefunction t/ R [a.u.] D [R] ~ - E [a.u.] 

~g~ = 1) 1.0136 0.923 0 0 1.02605 

k ~ '  ~ (m = 1) 1.1146 0.929 oo 0.245 1.0369 

~ 'D(m = 1) 1.0805 0.926 2.07 0.434 1.0595 

cutoff correlation factor allows for strong electron correlation in the case of 
short expansions, but it loses its efficiency as m increases. 

Complete optimization of all parameters, namely t/(the orbital exponent), ~, 
and R was performed for m = l .  The results are shown in Table 3, and 
compared with corresponding calculations for the uncorrelated wavefunction 
(7 ~~ and for tp~,~, referring to the correlation factor 1 + ~r l z (D = oe). 

All increments are 0.001 or less. The energy obtained from ~ ' ~  is again lower 
than the energy resulting from ~"c~ 
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